

CE-EMC TEST REPORT

Client Name : ILUMILEDS S.A. DE C.V.

Address : SAN ISIDRO 97 PISO 2 COL. SAN FRANCISCO TETECALA,

DELEG. AZCAPOTZALCO MEXICO, D.F. ZIP CODE 02730

Product Name : LED Profile

Test Model No. : DXAP02KIT

Report No. : CCTI-2023110615E

Issued Date : Nov. 16, 2023

Prepared By : Shenzhen CCTI Technology Co., Ltd.

Address : 7th Floor, Block A, Building E, Yongwei Industrial Park, No. 118,

Yongfu Road, Qiaotou, Fuhai Street, Bao'an District, Shenzhen,

Guangdong, China

Contact Info : Tel : 0086-400-188-9662 E-mail : ccti@ccti-lab.com

Fax: 0086-755-2722 5865 Web: www.ccti-lab.com

TEST REPORT VERIFICATION

Applicant : ILUMILEDS S.A. DE C.V.

Address : SAN ISIDRO 97 PISO 2 COL. SAN FRANCISCO TETECALA, DELEG.

AZCAPOTZALCO MEXICO, D.F. ZIP CODE 02730

Manufacturer : ILUMILEDS S.A. DE C.V.

Address : SAN ISIDRO 97 PISO 2 COL. SAN FRANCISCO TETECALA, DELEG.

AZCAPOTZALCO MEXICO, D.F. ZIP CODE 02730

Product Name : LED Profile

Model No. : DXAP02KIT

Series No. : See APPENDIX III -- EUT SERIES MODEL LIST

Trade Mark : **iLumileds**

Rating(s) : Input: DC12V-24V

Test Date : Nov. 07, 2023 to Nov. 16, 2023

Test Standard(s) : EN IEC 55015:2019+A11:2020

EN IEC 61000-3-2:2019+A1:2021

EN 61000-3-3:2013+A1:2019

EN 61547:2009

Test Result : PASS

This device described above has been tested by CCTI, and the test results show that the equipment under test (EUT) is in compliance with the EMC Directive 2014/30/EU requirements. The results shown in this test report refer only to the sample(s) tested unless other wise stated and the sample(s) are retained for 30 days only.

The document is issued by CCTI, may be altered or revised by CCTI, personal only, and shall be noted in the revision of the document. this document cannont be reproduced except in full with our prior written permission.

Producer By : Date : Nov. 16, 2023

(Betty Liang / Engineer)

Authorized Signer: Date: Nov. 16, 2023

TABLE OF CONTENTS

1. GENERAL INFORMATION	
1.1. Description of Device (EUT)	
1.2. Test Facility	
1.3. Tested System Details	
1.4. Test Uncertainty	
2. TEST INSTRUMENT USED	
3. CONDUCTED EMISSION AT THE MAINS TERMINALS TEST	
3.1. Block Diagram Of Test Setup	
3.2. Test Standard	
3.3. Power Line Conducted Emission Limit	9
3.4. EUT Configuration on Test	
3.5. Operating Condition of EUT	
3.6. Test Procedure	
3.7. Test Result	
4. MAGNETIC EMISSION TEST	
4.1. Block Diagram Of Test Setup	
4.2. Test Standard	
4.3. Power Line Conducted Emission Limit	
4.4. EUT Configuration on Test	
4.5. Operating Condition of EUT	
4.6. Test Procedure	
4.7. Test Result	
5. RADIATION EMISSION TEST	
5.1. Block Diagram of Test Setup	
5.2. Test Standard	13
5.3. Radiation Limit	13
5.4. EUT Configuration on Test	13
5.5. Operating Condition of EUT	14
5.6. Test Procedure	
5.7. Test Result	14
6. HARMONIC CURRENT EMISSION TEST	17
6.1. Block Diagram of Test Setup	1′
6.2. Test Standard	1′
6.3. Operating Condition of EUT	
6.4. Test Procedure	17
6.5. Test Results	17
7. VOLTAGE FLUCTUATIONS & FLICKER TEST	18
7.1. Block Diagram of Test Setup	18
7.2. Test Standard	
7.3. Operating Condition of EUT	18
7.4. Test Procedure	18
7.5. Test Results	18
8. ELECTROSTATIC DISCHARGE IMMUNITY TEST	19
8.1. Block Diagram of Test Setup	19
8.2. Test Standard	
8.3. Severity Levels and Performance Criterion	19
8.4. EUT Configuration	
8.5. Operating Condition of EUT	
8.6. Test Procedure	20
8.7. Test Results	
9. RF FIELD STRENGTH SUSCEPTIBILITY TEST	
9.1. Block Diagram of Test Setup	
9.2. Test Standard	23

9.3. Severity Levels and Performance Criterion	23
9.4. EUT Configuration on Test	22
9.5. Operating Condition of EUT	24
9.6. Test Procedure	25
9.7. Test Results	25
10. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	20
10.1. Block Diagram of EUT Test Setup	26
10.2. Test Standard	26
10.3. Severity Levels and Performance Criterion	26
10.4. EUT Configuration on Test	27
10.5. Operating Condition of EUT	27
10.6. Test Procedure	
10.7. Test Results	27
11. SURGE TEST	28
11.1. Block Diagram of EUT Test Setup	28
11.2. Test Standard	28
11.3. Severity Levels and Performance Criterion	28
11.4. EUT Configuration on Test	29
11.5. Operating Condition of EUT	
11.6. Test Procedure	29
11.7. Test Result	
12. INJECTED CURRENTS SUSCEPTIBILITY TEST	30
12.1. Block Diagram of EUT Test Setup	30
12.2. Test Standard	
12.3. Severity Levels and Performance Criterion	30
12.4. EUT Configuration on Test	31
12.5. Operating Condition of EUT	
12.6. Test Procedure	31
12.7. Test Result	32
13. MAGNETIC FIELD IMMUNITY TEST	33
13.1. Block Diagram of Test Setup	33
13.2. Test Standard	33
13.3. Severity Levels and Performance Criterion	33
13.4. EUT Configuration on Test	
13.5. Operating Condition of EUT	
13.6. Test Procedure	
13.7. Test Results	34
14. VOLTAGE DIPS AND INTERRUPTIONS TEST	
14.1. Block Diagram of EUT Test Setup	35
14.2. Test Standard	
14.3. Severity Levels and Performance Criterion	35
14.4. EUT Configuration on Test	36
14.5. Operating Condition of EUT	
14.6. Test Procedure	
14.7. Test Result	
APPENDIX I EUT PHOTOGRAPHS	
APPENDIX II EUT TEST PHOTOGRAPHS	41
ADDENDIY III FLIT SERIES MODEL LIST	42

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : LED Profile

Trademark : **iLumi**leds

Model Number : DXAP02KIT

Serial Model : See APPENDIX III -- EUT SERIES MODEL LIST

Model Difference : The product is different for model number and outlook color.

Power Supply : Input: DC12-24V

Remark:

(1) DXAP02KIT was selected as the test model and the datas have been recorded in this report.

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.2. Test Facility

Shenzhen CCTI Technology Co., Ltd.

7th Floor, Block A, Building E, Yongwei Industrial Park, No. 118, Yongfu Road, Qiaotou, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1.3. Tested System Details

None.

1.4. Test Uncertainty

Conducted Emission : ± 2.66dB

Uncertainty

Radiated Emission Uncertainty : ± 4.26dB

2. TEST INSTRUMENT USED

For Conducted Emission at the mains terminals Test

Conducted Emission Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
843 Shielded Room	ChengYu	843 Room	843	Mar. 12, 2023	Mar. 11, 2024	
EMI Receiver	R&S	ESCI	101421	Mar. 12, 2023	Mar. 11, 2024	
LISN	Schwarzbeck	NSLK8127	8127739	Mar. 12, 2023	Mar. 11, 2024	
Attenuator	R&S	ESH3-Z2	CCTI021E	Mar. 12, 2023	Mar. 11, 2024	
843 Cable 1#	FUJIKURA	843C1#	001	Mar. 12, 2023	Mar. 11, 2024	

For Conducted Emission at the telecom port Test

Conducted Emission Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
843 Shielded Room	ChengYu	843 Room	843	Mar. 12, 2023	Mar. 11, 2024	
EMI Receiver	R&S	ESCI	101421	Mar. 12, 2023	Mar. 11, 2024	
Coupling/ Decoupling Network	PH	ISN T800	S1509001	Mar. 12, 2023	Mar. 11, 2024	
Attenuator	R&S	ESH3-Z2	CCTI021E	Mar. 12, 2023	Mar. 11, 2024	
843 Cable 1#	FUJIKURA	843C1#	001	Mar. 12, 2023	Mar. 11, 2024	

For Radiated Emission Test

Radiation Emission Test (966 chamber)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
966 chamber	ChengYu	966 Room	966	Mar. 12, 2023	Mar. 11, 2024	
Spectrum Analyzer	Agilent	E4407B	MY45109572	Mar. 12, 2023	Mar. 11, 2024	
Amplifier	Schwarzbeck	BBV9743	9743-119	Mar. 12, 2023	Mar. 11, 2024	
Amplifier	Schwarzbeck	BBV9718	9718-270	Mar. 12, 2023	Mar. 11, 2024	
Log-periodic Antenna	Schwarzbeck	VULB9160	VULB9160-3 369	Mar. 12, 2023	Mar. 11, 2024	
EMI Receiver	R&S	ESCI	101421	Mar. 12, 2023	Mar. 11, 2024	
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1275	Mar. 12, 2023	Mar. 11, 2024	
966 Cable 1#	CHENGYU	966	004	Mar. 12, 2023	Mar. 11, 2024	
966 Cable 2#	CHENGYU	966	003	Mar. 12, 2023	Mar. 11, 2024	

For Harmonic & Flicker Test

Harmonic / Flicker Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Harmonic / Flicker Analyzer	KIKUSUI	KHA1000	VA002445	Mar. 12, 2023	Mar. 11, 2024	
AC Power Supply	KIKUSUI	PCR4000M	UK001879	Mar. 12, 2023	Mar. 11, 2024	
Line Impedance network	KIKUSUI	LIN1020JF	UL001611	Mar. 12, 2023	Mar. 11, 2024	

For Electrostatic Discharge Immunity Test

For Electrostatic Discharge Immunity Test (A site)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
ESD Tester	KIKISUI	KES4201A	UH002321	Mar. 12, 2023	Mar. 11, 2024

For RF Field Strength Susceptibility Test (SMQ)

	RF Field Strength Susceptibility Test (SMQ site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Signal Generator	HP	8648A	3625U00573	Mar. 12, 2023	Mar. 11, 2024		
Amplifier	A&R	500A100	17034	Mar. 12, 2023	Mar. 11, 2024		
Amplifier	A&R	100W/1000M1	17028	Mar. 12, 2023	Mar. 11, 2024		
Audio Analyzer (20Hz~1GHz)	Panasonic	2023B	202301/428	Mar. 12, 2023	Mar. 11, 2024		
Isotropic Field Probe	A&R	FP2000	16755	Mar. 12, 2023	Mar. 11, 2024		
Antenna	EMCO	3108	9507-2534	Mar. 12, 2023	Mar. 11, 2024		
Log-periodic Antenna	A&R	AT1080	16812	Mar. 12, 2023	Mar. 11, 2024		

For Electrical Fast Transient /Burst Immunity Test

Electrical Fast Transient/Burst Immunity Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Burst Tester	Prima	EFT61004AG	PR14054467	Mar. 12, 2023	Mar. 11, 2024	
Coupling Clamp	Prima	EFT61004AG	CCTI009E	Mar. 12, 2023	Mar. 11, 2024	

For Surge Test

For Surge Test (A site)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Surge Tester	Prima	SUG61005BX	PR12045446	Mar. 12, 2023	Mar. 11, 2024

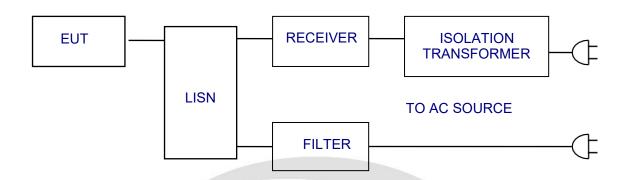
For Injected Currents Susceptibility Test

For Injected Currents Susceptibility Test (A site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
C/S Test System	SCHLODER	CDG600	126B1281	Mar. 12, 2023	Mar. 11, 2024	
CDN	SCHLODER	CDN-M2+3	A2210320/201 5	Mar. 12, 2023	Mar. 11, 2024	
Injection Clamp	SCHLOBER	EMCL-20	132A1214/201 5	Mar. 12, 2023	Mar. 11, 2024	

For Magnetic Field Immunity Test

For Magnetic Field Immunity Test (A site)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Magnetic field generator	HTEC	HPFMF	15701	Mar. 12, 2023	Mar. 11, 2024

For Voltage Dips Interruptions Test


For Voltage Dips Interruptions Test (A site)							
Equipment	ent Manufacturer Model# Serial# Last Cal. Next Cal.						
Dips Tester	Prima	DRP61011AG	PR14086284	Mar. 12, 2023	Mar. 11, 2024		

3. CONDUCTED EMISSION AT THE MAINS TERMINALS TEST

3.1. Block Diagram Of Test Setup

3.2. Test Standard

EN IEC 55015:2019+A11:2020

3.3. Power Line Conducted Emission Limit

Fraguency MI-	Limits dB(μV)			
Frequency MHz	Quasi-peak Level	Average Level		
0.009 ~ 0.05	110	N/A		
0.05 ~ 0.15	90 ~ 80*	N/A		
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*		
0.50 ~ 5.00	56	46		
5.00 ~ 30.00	60	50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.4. EUT Configuration on Test

The following equipments are installed on conducted emission test to meet EN 55015 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

3.5. Operating Condition of EUT

- 3.5.1. Setup the EUT and simulators as shown in Section 3.1.
- 3.5.2. Turn on the power of all equipments.
- 3.5.3. Let the EUT work in test modes and test it.

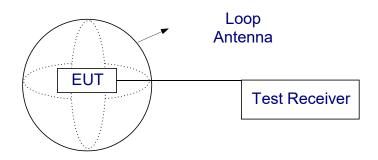
3.6. Test Procedure

The EUT is put on the ground and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the EN 55015 regulations during conducted emission test.

The bandwidth of the test receiver (R&S Test Receiver ESCI) is set at 10KHz.

The frequency range from 150 KHz to 30 MHz is investigated.

3.7. Test Result


The EUT is powered by the DC only, the test item is not applicable.

4. MAGNETIC EMISSION TEST

4.1. Block Diagram Of Test Setup

4.2. Test Standard

EN IEC 55015:2019+A11:2020

4.3. Power Line Conducted Emission Limit

Fraguanay MUz	Limits dB(μA)
Frequency MHz	Quasi-peak Level
0.009 ~ 0.07	88
0.07 ~ 0.15	88 ~ 58*
0.15 ~ 0.50	58 ~ 22*
0.50 ~ 5.00	22

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

4.4. EUT Configuration on Test

The following equipments are installed on conducted emission test to meet EN 55015 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

4.5. Operating Condition of EUT

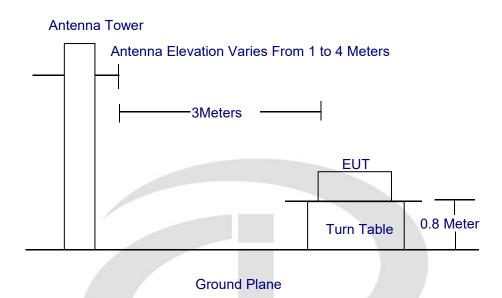
- 4.5.1. Setup the EUT and simulators as shown in Section 4.1.
- 4.5.2. Turn on the power of all equipments.
- 4.5.3. Let the EUT work in test modes and test it.

4.6. Test Procedure

The EUT is placed on a wood table in the center of a loop antenna. The induced current in the loop antenna is measured by means of a current probe and the test receiver. Three field components is checked by means of a coax switch.

The frequency range from 9kHz to 30MHz is investigated. The receiver is measured with the quasi-peak detector. For frequency band 9kHz to 150kHz, the bandwidth of the field strength meter (R&S Test Receiver ESCI) is set at 200Hz. For frequency band 150kHz to 30MHz, the bandwidth is set at 10kHz.

4.7. Test Result


The peak value is too low against the limit, so the test data is not record.

5. RADIATION EMISSION TEST

5.1. Block Diagram of Test Setup

5.2. Test Standard

EN IEC 55015:2019+A11:2020

5.3. Radiation Limit

Frequency MHz	Distance (Meters)	Field Strengths Limits dB (μV)/m
30 ~ 230	3	40.0
230 ~ 300	3	47.0

Remark:

- (1) Emission level $(dB(\mu V)/m) = 20 \log Emission level (\mu V/m)$
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument, antenna and the closed point of any part of the device or system.

5.4. EUT Configuration on Test

The EN 55015 regulations test method must be used to find the maximum emission during radiated emission test.

The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 2.2.

5.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.2 except the test set up replaced as Section 5.1.

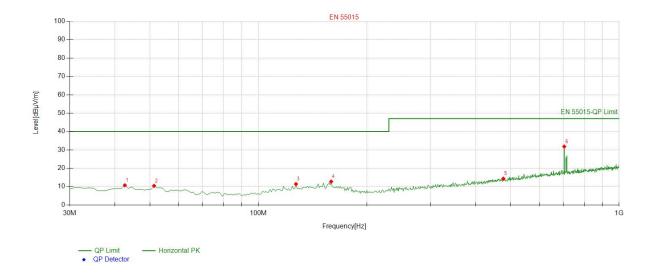
5.6. Test Procedure

The EUT and its simulators are placed on a turned table that is 0.8 meter above the ground. The turned table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna that is mounted on the antenna tower. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated biconical and log periodical antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on test. In order to find the maximum emission levels, the interface cable must be manipulated according to EN 55015 on radiated emission test.

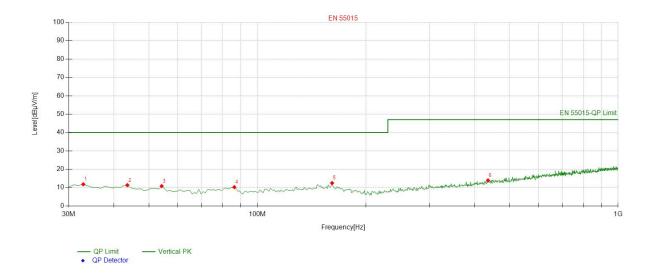
The bandwidth setting on the field strength meter (R&S Test Receiver ESCI) is set at 120kHz

The frequency range from 30MHz to 300MHz is checked.

5.7. Test Result

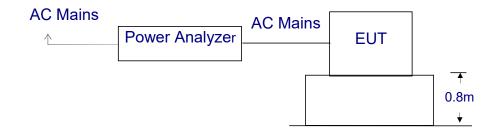

PASS

Please refer to the following page.


Radiation Emission Test Data					
Temperature: 24.5 ℃ Relative Humidity: 54%					
Pressure:	1009hPa	Phase :	Horizontal		
Test Voltage :	Test power supply	Test Mode:	Working		

Suspected List									
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBμV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	42.622623	-16.59	27.30	10.71	40.00	29.29	100	171	Horizontal
2	51.361361	-16.93	27.33	10.40	40.00	29.60	100	353	Horizontal
3	127.09709	-17.51	28.89	11.38	40.00	28.62	100	355	Horizontal
4	159.13913	-15.95	28.67	12.72	40.00	27.28	100	257	Horizontal
5	477.61761	-14.06	28.39	14.33	47.00	32.67	100	158	Horizontal
6	704.82482	-10.72	42.52	31.80	47.00	15.20	100	302	Horizontal

Radiation Emission Test Data					
Temperature: 24.5 ℃ Relative Humidity: 54%					
Pressure:	1009hPa	Phase :	Vertical		
Test Voltage :	Test power supply	Test Mode:	Working		



Suspected List									
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	32.912913	-17.22	29.02	11.80	40.00	28.20	100	27	Vertical
2	43.593594	-16.66	27.97	11.31	40.00	28.69	100	274	Vertical
3	54.274274	-17.20	28.01	10.81	40.00	29.19	100	281	Vertical
4	86.316316	-20.85	31.07	10.22	40.00	29.78	100	277	Vertical
5	161.08108	-16.04	28.51	12.47	40.00	27.53	100	324	Vertical
6	435.86586	-14.65	28.56	13.91	47.00	33.09	100	65	Vertical

6. HARMONIC CURRENT EMISSION TEST

6.1. Block Diagram of Test Setup

6.2. Test Standard

EN IEC 61000-3-2:2019+A1:2021

6.3. Operating Condition of EUT

- 6.3.1. Setup the EUT as shown in Section 6.1.
- 6.3.2. Turn on the power of all equipments.
- 6.3.3. Let the EUT work in test mode and test it.

6.4. Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

6.5. Test Results

The EUT is powered by the DC only, the test item is not applicable.

There is no need for Harmonic current test to be performed on this product (rated power is less than 75 W) in accordance with EN 61000-3-2.

For further details, please refer to Clause 7 of EN 61000-3-2 which states:

"For the following categories of equipment, limits are not specified in this standard:

- equipment with a rated power of 75 W or less, other than lighting equipment."

7. VOLTAGE FLUCTUATIONS & FLICKER TEST

7.1. Block Diagram of Test Setup

Same as Section 6.1..

7.2. Test Standard

EN 61000-3-3:2013+A1:2019

7.3. Operating Condition of EUT

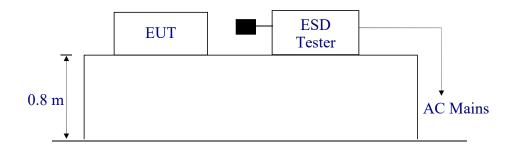
Same as Section 6.3.. The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

Flicker Test Limit

Test items	Limits		
Pst	1.0		
dc	3.3%		
dmax	4.0%		
dt	Not exceed 3.3% for 500ms		

7.4. Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.


7.5. Test Results

The EUT is powered by the DC only, the test item is not applicable.

8. ELECTROSTATIC DISCHARGE IMMUNITY TEST

8.1. Block Diagram of Test Setup

8.2. Test Standard

EN 61547:2009, EN 61000-4-2:2009

Severity Level: 3 / Air Discharge:±8KV

Level: 2 / Contact Discharge:±4KV

8.3. Severity Levels and Performance Criterion

8.3.1. Severity level

Level	Test Voltage Contact Discharge	Test Voltage Air Discharge
	(KV) (KV)	
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
X	Special	Special

8.3.2. Performance criterion: B

A. The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

B. After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaces by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably except from the equipment if used as intended.

C. C.Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

8.4. EUT Configuration

The following equipments are installed on Electrostatic Discharge Immunity test to meet EN 61547:2009, EN 61000-4-2:2009, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 2.4.

8.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 3.5 except the test setup replaced by Section 7.1.2.

8.6. Test Procedure

8.6.1. Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

8.6.2. Contact Discharge:

All the procedure shall be same as Section 7.6.1. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

8.6.3. Indirect discharge for horizontal coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

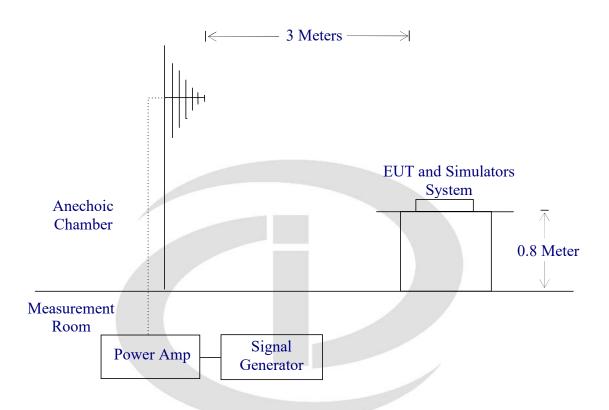
8.6.4. Indirect discharge for vertical coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are complete illuminated.

8.7. Test Results

PASS

Please refer to the following page



ESD Test Data						
Temperature:	24.5 ℃	Relative Humidity:	54%			
Pressure:	1009hPa	Test Mode:	Working			
Test Voltage:	Test power supply	Test Result:	☑ Pass ☐ Fail			
Air Discharge: ± 8KV Contact Discharge: ± 4KV # For each point positive 25 times and negative 25 times discharge						
Test Points	Air Discharge	Contact Discharge	Performance Criterion			
Enclosure	N/A	±2,4 KV	В			
Button	±2,4,8KV	N/A	В			
Metal Part	N/A	±2,4 KV	В			
VCP	N/A	±2,4 KV	В			
НСР	N/A	±2,4 KV	В			
Note: N/A						

中置加测 CCTI TESTING

9. RF FIELD STRENGTH SUSCEPTIBILITY TEST

9.1. Block Diagram of Test Setup

9.2. Test Standard

EN 61547:2009, EN IEC 61000-4-3:2020

Severity Level 2, 3V / m

9.3. Severity Levels and Performance Criterion

9.3.1. Severity level

Level	Field Strength V/m
1.	1
2.	3
3.	10
X.	Special

9.3.2. Performance criterion: A

A. The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

B. After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaces by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably except from the equipment if used as intended.

C. Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

9.4. EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 61547:2009, EN IEC 61000-4-3:2020, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 3.4.

9.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.5 except the test setup replaced by Section 8.1.

9.6. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.

All the scanning conditions are as follows:

Condition of Test	Remarks
1. Fielded Strength	3 V/m (Severity Level 2)
2. Radiated Signal	Modulated
3. Scanning Frequency	80 – 1000 MHz
4. Dwell time of radiated	0.0015 decade/s
5. Waiting Time	1 Sec.

9.7. Test Results PASS

R/S Test Data					
Temperature:	25 ℃		Relative Humidity:	53%	
Field Strength:	3 V/m			Test Mode:	Working
Test Voltage:	Test power supply		Frequency Range:	80 MHz to 1000 MHz	
Modulation:	☑ AM □ Pulse		□ none 1 KHz 80%	80%	
Steps	1%				
	Horiz	zontal		Vertical	Result
Front	,	4		Α	Pass
Right	,	4		Α	Pass
Rear	,	4		Α	Pass
Left	A		Α	Pass	
Note: N/A					

10. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

10.1. Block Diagram of EUT Test Setup

10.2. Test Standard

EN 61547:2009, EN 61000-4-4:2012

10.3. Severity Levels and Performance Criterion

Severity Level 2 at 1KV, Pulse Rise time & Duration: 5 nS / 50 nS Severity Level:

Open Circuit Output Test Voltage ±10%			
Level	On power ports	On I/O(Input/Output) Signal data and control ports	
1.	0.5KV	0.25KV	
2.	1KV	0.5KV	
3.	3. 2KV 1KV		
4.	I. 4KV 2KV		
X.	Special	Special	

Performance criterion: B

A. The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

B. After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaces by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably except from the equipment if used as intended.

C. Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

10.4. EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 61547:2009, EN 61000-4-4:2012, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 3.4.

10.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.6 except the test setup replaced by Section 9.1.

10.6. Test Procedure

EUT shall be placed 0.8m high above the ground reference plane which is a min.1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m

10.6.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

10.7. Test Results

The EUT is powered by the DC only, the test item is not applicable.

11. SURGE TEST

11.1. Block Diagram of EUT Test Setup

11.2. Test Standard

EN 61547:2009

EN 61000-4-5:2014+A1:2017

11.3. Severity Levels and Performance Criterion

Severity Level: Line to Line, Level 2 at 1KV; Severity Level: Line to Earth, Level 3 at 2KV.

Severity Level	Open-Circuit Test Voltage (KV)
1.	0.5
2.	1.0
3.	2.0
4.	4.0
X.	Special

Performance criterion: B

A. The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

B. After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaces by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not

specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably except from the equipment if used as intended.

C. Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

11.4. EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/ Burst Immunity test to meet EN 61547:2009, EN61000-4-5:2014+A1:2017,requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 3.4.

11.5. Operating Condition of EUT

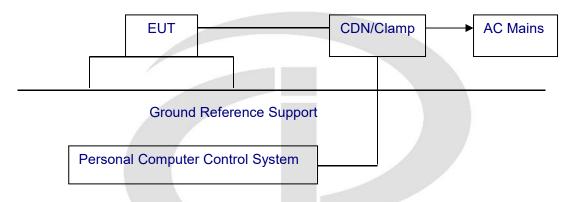
Same as conducted emission measurement, which is listed in Section 2.7 except the test setup replaced by Section 10.1.

11.6. Test Procedure

- (1) Set up the EUT and test generator as shown on section 10.1
- (2) For line to line coupling mode, provide a 1KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- (3) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- (4) Different phase angles are done individually.
- (5) Repeat procedure 2) to 4) except the open-circuit test voltage change from 1KV to 2KV for line to earth coupling mode test.
- (6) Record the EUT operating situation during complianHce test and decide the EUT immunity criterion for above each test.

11.7. Test Result

The EUT is powered by the DC only, the test item is not applicable.


12. INJECTED CURRENTS SUSCEPTIBILITY TEST

12.1. Block Diagram of EUT Test Setup

12.1.1. Block Diagram of EUT Test Setup

12.1.2. Block Diagram of Test Setup

12.2. Test Standard

EN 61547:2009, EN61000-4-6:2014/AC:2015

12.3. Severity Levels and Performance Criterion

Severity Level 2: 3V(rms), 150KHz \sim 80MHz

Severity Level:

Level	Field Strength V
1.	1
2.	3
3.	10
X.	Special

Performance criterion: A

A. The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance

loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

B. After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaces by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably except from the equipment if used as intended.

C. Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

12.4. EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.8.

12.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.8 except the test set up replaced as Section 11.1.

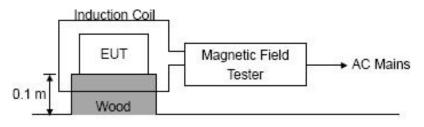
12.6. Test Procedure

- (1) Set up the EUT, CDN and test generator as shown on section 11.1
- (2) Let EUT work in test mode and measure.
- (3) The EUT and supporting equipments are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane at above 0.1-0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- (4) The disturbance signal described below is injected to EUT through CDN.
- (5) The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- (6) The frequency range is swept from 150KHz to 80MHz using 3V signal level,

and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave.

- (7) The rate of sweep shall not exceed 1.5×10-3 decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- (8) Recording the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

12.7. Test Result


The EUT is powered by the DC only, the test item is not applicable.

13. MAGNETIC FIELD IMMUNITY TEST

13.1. Block Diagram of Test Setup

Ground Reference Support

13.2. Test Standard

EN 61547:2009, EN61000-4-8:2010 Severity Level 1 at 1A/m

13.3. Severity Levels and Performance Criterion

13.3.1. Severity level

Level	Magnetic Field Strength A/m		
1.	1		
2.	3		
3.	10		
4.	30		
5.	100		
X.	Special		

13.3.2. Performance criterion: B

A. The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

B. After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level

specified by the manufacturer, when the equipment is used as intended. The performance level may be replaces by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably except from the equipment if used as intended.

C. Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

13.4. EUT Configuration on Test

The configuration of EUT is listed in Section 2.9.

13.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.9 except the test set up replaced as Section 12.1.

13.6. Test Procedure

The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions (1m*1m) and shown in Section 10.1. The induction coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

13.7. Test Results

The EUT is powered by the DC only, the test item is not applicable.

14. VOLTAGE DIPS AND INTERRUPTIONS TEST

14.1. Block Diagram of EUT Test Setup

14.2. Test Standard

EN 61547:2009, EN 61000-4-11:2004+A1:2017

14.3. Severity Levels and Performance Criterion

Severity Level:

Input and Output AC Power Ports.

☑ Voltage Dips.

✓ Voltage Interruptions.

Environmental Phenomena	Test Specification	Units	Performance Criterion
Voltage Dips	70 10	% Reduction period	С
	0 0.5	% Reduction period	В

Performance criterion: C, B

A. The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

B. B.After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably except from the equipment if used as intended.

C. Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

14.4. EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.10.

14.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.10 except the test set up replaced as Section 13.1.

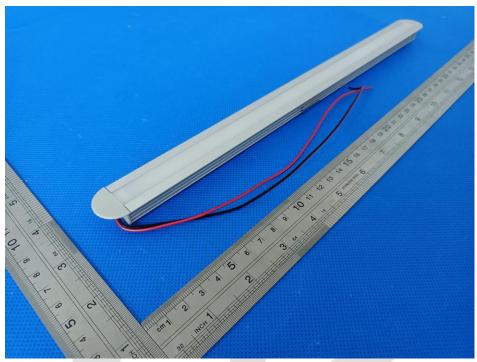
14.6. Test Procedure

- (1) Set up the EUT and test generator as shown on section 13.1.
- (2) The interruption is introduced at selected phase angles with specified duration. There is a 3mins minimum interval between each test event.
- (3) After each test a full functional check is performed before the next test.
- (4) Repeat procedures 2 & 3 for voltage dips, only the level and duration is changed.
- (5) Record any degradation of performance.

14.7. Test Result

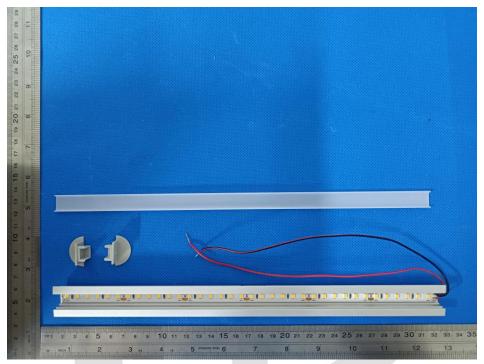
The EUT is powered by the DC only, the test item is not applicable.

APPENDIX I -- EUT PHOTOGRAPHS

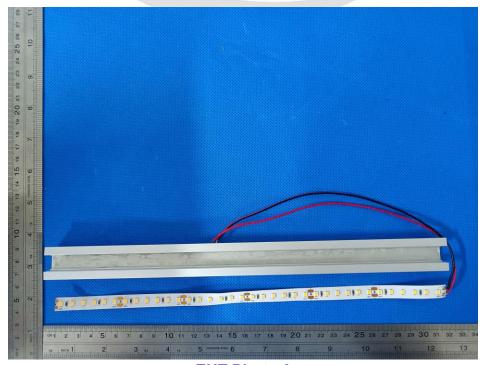


EUT Photo 1

EUT Photo 2



EUT Photo 3



EUT Photo 4

EUT Photo 5

EUT Photo 6

EUT Photo 7

EUT Photo 8

APPENDIX II -- EUT TEST PHOTOGRAPHS

EUT Photo RE

CCTI TESTING

APPENDIX III -- EUT SERIES MODEL LIST

SERIES MODEL LIST			
DXAP01NKIT	DXAP02NKIT	ILUPA109NKIT	PA1616NKIT
ILUPA1806NFLEKIT	ILUPA1722NUGRKIT	ILUPA1722NUGRCKI	ILUPA3551NUGRKIT
ILUPA3551NUGRCKIT	ILUPA5175NKIT	PA1612NKIT	ILUPA191BKIT
DXAP01KIT	ILUPA1722	DXAP06KIT	PA1612KIT
ILUPA1806FLEKIT	PA2213KIT	ILUPA109KIT	PA2411KIT
ILUPA109KIT	PA2411KIT	ILUPA1005KIT	ILUPA07KIT
ILUPA1009KIT	ILUPA07AKIT	ILUPA525KIT	ILUPA1205KIT
ILUPA2310KIT	ILUPA646KIT	ILUPA647KIT	ILUPA191WKIT
ILUPA1401KIT	ILUPA1402KIT	ILUPAV04	PA3006KIT
PA1616KIT	PA1616BKIT	ILUPA1722UGRKIT	ILUPA1722UGRCKIT
ILUPA3551UGRKIT	ILUPA3551UGRCKIT	ILUDXA1812KIT	ILUDXA2512KIT
ILUPA2216KIT	ILUPA3030KIT	ILUPA2403COKIT	ILUPA2405COKIT
ILUPA3830KIT	ILUPA5032KIT	ILUPA3535KIT	ILUPA30KIT
ILUPA60KIT	PA1911PKIT	ILUPA1855NKIT	ILUPA2408NKIT
ILUPA1207NKIT	ILUPA1207KIT	ILUPA2210NKIT	ILUPA2210KIT
ILPA2018NKIT	ILUPA2018KIT		

